热继电器过载保护装置,结构原理均很简单,可选调热元件却很微妙,若等级选大了就得调至低限,常造成电动机偷停,影响生产,增加了维修工作。若等级选小了,只能向高限调,往往电动机过载时不动作,甚至烧毁电机。
照明配电箱(板)使用未经阻燃处理的木质材料。后果:照明配电箱(板)若在潮湿多尘场所使用木制的容易霉烂和漏电;另外,木制的箱(板)不经过阻燃处理,容易引发火灾,是不安全的隐患。 措施:为保证安全使用,要求照明配电箱(板)不应采用可燃材料制作。即使在于燥无尘的场所,采用的木制配电箱(板)也应经阻燃处理后才能用。
采用上面时钟延时的设计方法能够解决复位信号不同时到达各个触发器的问题,即解决了复位同步的问题。但如果采用简单的时钟延时方法可能会导致其他的问题,这是因为在大规模集成电路的设计中,为了简化设计和降低面积,并不是每个触发器都会与复位信号直接相连,他们的状态一般是通过临近已复位触发器的时序状态来间接影响的。如果在复位期间时钟一直在工作,这些没有复位信号的触发器也能根据其他相邻的触发器状态复位,因为没有复位的触发器会在时钟的作用下采集到其他触发器的复位状态。但在上面的延时复位方案中,复位期间没有时钟,其他触发器的复位状态就不可能传递到那些没有复位端的触发器,从而导致系统不能正确复位。
当所有触发器进入复位状态后,将时钟打开一定时间。这时由于有复位端的信号都处于复位状态(即使有时钟也不会工作),只有无复位信号的触发器工作。而且无复位信号的触发器会采集有复位信号的触发器复位状态,在保证所有的无复位触发器都采到有效的复位状态后,时钟控制模块又会将时钟关闭,然后才是复位信号的撤消过程。这样中间有一段时钟信号用来复位无复位端的信号,这段时钟持续时间的长短可以根据设计中较长无复位信号触发器链来决定,至少要大于链的长度。例如在图6中,在各模块Rst复位信号都有效的时间段(Tr)内,在CLK时钟信号上产生至少N-2个脉冲。这样,图6中没有与Rst信号直接相连的N-2个触发器就可以在N-2个CLK信号作用下,通过触发器D1的输出来翻转为确定状态,完成复位操作。