渭南华州区初中语文培训机构自创立以来,一直致力于教育和科技的融合,在云和移动互联的时代,教育将走向哪里?
教育将如何与科技更好的融合?在教培行业的4.0时代,是更加高效、更加专注、更加个性化的教育,2000多年前,孔子说因材施教,而今天,有了更加先进的科技,我们才能给教育插上科技的翅膀,让孩子飞的更高。
创办渭南华州区初中语文培训机构的初衷,就是希望能够为孩子提供真正的个性化教育,通过教育与科技的深度融合,集团已经在内部教学管理体系中,逐步脱离了传统的“老中医”依靠经验治病的模式,通过打造数据驱动的“西医式”教育模式,为孩子提供高效定制的个性化教育。
我们专注于学生的个性化教育,不断研发精准高效的教研工具,长期沉淀每个孩子的学习数据,并不断对高考、中考命题进行大数据模型研究,从而保证每一堂课的高效性、精准性,通过提供空中课堂、智慧课堂、在线或面授一对一、精品小班、自主招生、慧志愿等多种随需定制的辅导形式,让孩子在线上、线下和产品间的学习可自由切换,让孩子学习更高效。
巧编习题,培养学生的创新思维 创设导入情境能够激发兴趣,但一堂课仅靠开始时的学习热情是远远不够的,要想方设法地保持学生的兴趣和热情。在教学中教师根据不同的内容和学生身心发育特征,创设一些内容各异、难易有别的实践活动,更有利于学生保持学习热情和理解数学知识。在学习“几何体的截面”时,可以采取分组教学的方式,提前准备土豆、地瓜等物品,让学生自己动手去切割成正方体,并观察截面的形状。这种实践学习方式能够极大地调动学生学习的积极性,体验自主探究的喜悦,加深对结论的理解。再如,学习同类项定义时,为了让学生更好地理解同类项的内涵与外延,可以设计“找朋友”小游戏:在提前制作好的卡片上写上单项式,让学生去找自己的好朋友——同类项,通过学生参与活动,丰富了教学形式,寓教于乐,学生印象深刻,记忆持久。教师只要认真钻研教学内容,找准实践活动的切入点,就能激发学生的学习热情,提高课堂效率。 所谓语言精炼,就是要求教师在课堂教学中,用最少的语句表达更丰富的内客。有的教师唯恐学生理解不了,讲课语言繁琐累赘,这种做法不利于学生掌握知识的重点和理解知识间的联系,更不利于发展学生的智力,培养学生的能力。但是语言精练并不是单纯地削减语言的数量,而是要提高语言的质量,这就要求教学语言要突出重点,抓住关键,分化难点。如在讲解垂径分弦定理及其逆定理时,教师只需讲清扇形与等腰三角形之间的联系,任何一个扇形都对应着一个等腰三角形,这个等腰三角形的顶点是圆心,顶角是扇形的圆心角,底边是扇形的圆心角所对的弦,两腰是扇形的半径,至于垂径分弦定理及其逆定理,就可以让学生根据等腰三角形三线合一的性质自己去导出。语言要精练必须服从于教学规律,采用最优教学方法,放心大胆地让学生思考、讨论、猜想、总结,教师的语言只起到画龙点睛的作用。 2数学找规律的方法一标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。找出的规律,通常包序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。例如,观察下列各式数:0,3,8,15,24,……。试按此规律写出的第100个数是 。解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,……。序列号: 1,2,3, 4, 5,……。容易发现,已知数的每一项,都等于它的序列号的平方减1。因此,第n项是n2-1,第100项是1002-1。公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关。例如:1,9,25,49,(),(),的第n为(2n-1)2.看例题:A: 2、9、28、65.....增幅是7、19、37....,增幅的增幅是12、18 答案与3有关且............即:n3+1B:2、4、8、16.......增幅是2、4、8.. .....答案与2的乘方有关 即:2n有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系。再在找出的规律上加上第一位数,恢复到原来。例:2、5、10、17、26……,同时减去2后得到新数列:0、3、8、15、24……,序列号:1、2、3、4、5分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1 数学的自主学习要从预习开始,学生的自主性学习能够帮助他们预先发现问题,并且在发现问题后能够刺激他们去思考,而这个思考的过程又是自发性的,所以在预习阶段,学生能够完全地发挥独立自主能力来做好数学学习的准备。例如苏教版初中数学七年级下册中关于“平面图形的认识”这一单元,学生就能够充分发挥自己观察、思考的能力。教师可以先引导学生去观察生活中的平面图形,比如电视机屏幕、桌面、卡片等东西都是可以作为观察的对象。学生通过自己观察产生对“平面图形”的认识,并且也能够发现一些问题:水杯的面能不能称作平面呢;水平面是不是平面呢……从而在课堂教学过程中能够更加容易地理解教材中的数学理论知识。教师在教学的同时也更能顺利地让学生明白自己表达的知识点,提高课堂效率。所以学生在学习数学时,自主预习的工作是非常必要的,在预习中发现的问题能够在课堂上得到很好的解释,帮助了学生对知识点的掌握。 例如预备数学“等可能事件”一课,基于预备学生的心理特征,我们的课堂教学要创设生动的数学情境,抓住学生的好奇心。本课由上海中心气象台今日天气预报:“明天降雨的概率为80%…”。明天会下雨吗?这一问题创设情境,然后从多个生活实例中让学生初步体验等可能事件,从而引出新课内容。这样从实际生活中导入新知,符合探求知识的规律,这样安排一下就吸引住了学生的注意力,学生亲身经历了数学问题的产生过程,感受到数学知识与生活的密切联系和无限趣味,同时也可激发了学生的学习兴趣。悬念导入法
|