铜川王益区高考复读全日制学校自创立以来,一直致力于教育和科技的融合,在云和移动互联的时代,教育将走向哪里?
教育将如何与科技更好的融合?在教培行业的4.0时代,是更加高效、更加专注、更加个性化的教育,2000多年前,孔子说因材施教,而今天,有了更加先进的科技,我们才能给教育插上科技的翅膀,让孩子飞的更高。
创办铜川王益区高考复读全日制学校的初衷,就是希望能够为孩子提供真正的个性化教育,通过教育与科技的深度融合,集团已经在内部教学管理体系中,逐步脱离了传统的“老中医”依靠经验治病的模式,通过打造数据驱动的“西医式”教育模式,为孩子提供高效定制的个性化教育。
我们专注于学生的个性化教育,不断研发精准高效的教研工具,长期沉淀每个孩子的学习数据,并不断对高考、中考命题进行大数据模型研究,从而保证每一堂课的高效性、精准性,通过提供空中课堂、智慧课堂、在线或面授一对一、精品小班、自主招生、慧志愿等多种随需定制的辅导形式,让孩子在线上、线下和产品间的学习可自由切换,让孩子学习更高效。
当你置身青山绿水间,当你看到一队橄榄绿飒爽地走过,当你读到朱自清先生的散文《绿》,当你吃着绿色食品时……你都有何感想?作何思考? 与数学有关的实际问题有很多。例如,在线段的垂直平分线这节课,可以这样导入:为了改善张、王、李三村吃水难的问题,市政府决定新建一个水电站,向三个村庄供水,要求水电站到三个村庄所辅设的管道长相等,你能帮助他们找出建水电站的位置吗?如果将三个村庄抽象成三个点A、B、C,如何求作一点P使PA=PB=PC?这时给学生充分的时间讨论,结合他们的讨论提出问题:这个点在哪儿?这个点怎么找?也就是说如何满足同一平面内一点到其他三点的距离都相等?利用已学过的知识,可以构造以P为顶点的等腰三角形△PAB、△PAC、△PBC,而如何构造这样的等腰三角形呢?我们今天就来学习线段的垂直平分线。 重点检索的要点:题目 通过分析归纳,培养学生创新思维 又如在教学平面图形的面积计算公式后,我要求学生归纳出一个能概括各个平面图形面积计算的公式,我让学生进行讨论,经过讨论,学生们归纳出,在小学阶段学过的面积公式都可以用梯形的面积计算公式来进行概括,因为梯形的面积计算公式是:(上底 +下底)×高÷2 。而长方形、正方形、平行四边形的上底和下底相等,即可将这公式变成:底(长、边长)×高(宽、边长)×2÷2 = 底(长、边长)×高(宽、边长); 除了要重视老师的教学方式。也要尊重发挥学生的学习方式,学习方式是学习者持续一贯表现出来的学习策略和学习倾向的总和。学习策略指学习者完成学习任务或实现学习目标而采用的一系列步骤,其中某一特定步骤称为学习方法,例如:有的学生倾向于借助具体形象进行记忆和思考,有的学生偏爱运用概念进行分析,叛断和推理;有人善于运用视觉通道,有人倾向于运用听觉通道,也有人喜欢运用动觉通道。学生在学习过程中会表现出不同的学习倾向,包括学习情绪、态度、动机,坚持性以及对学习环境,学习内容等方面的偏爱。 书上的数学概念是平面的,现实却是丰富多彩的,照本宣科,简单学习自然无法让这些数学概念成为孩子们数学知识的坚固基石。如果我们能够让孩子们的多种感官参与学习,让平面的书本知识变得多维、立体,让孩子们的感觉和思维同步,相信能取得很好的教学效果。 第二轮,针对热点,抓住弱点,开展难点知识专题复习。根据历年中考试卷命题的特点,精心选择一些新颖的、有代表性的题型进行专题训练,就中考的特点可以从以下几个方面收集一些资料进行专项训练:①实际应用型问题;②突出科技发展、信息资源的转化的图表信息题;③体现自学能力考查的阅读理解题;④考查学生应变能力的图形变化题、开放性试题;⑤考查学生思维能力、创新意识的归纳猜想、操作探究性试题;⑥几何代数综合型试题等。
|